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ABSTRACT 

 

In this method the user gives a graph as input which is then processed. After processing the input graph is 

determined whether it is a planar graph or not. If the input graph is planar then a planar embedding of the given 

input graph is shown as the output having only one color. If the input graph is non planar then n layers of the given 

input graph is displayed where each layer is of different colors. Then each layer is also called as the Geometric-

Thickness. The geometric thickness θ(G) of a graph G is the smallest integer t such that there exist a straight-line 

drawing  of G and a partition of its straight-line edges into t subsets, where each subset induces a planar drawing. 

Over a decade ago, Hutchinson, Shermer, and Vince proved that any n-vertex graph with geometric thickness two 

can have at most 6n − 18 edges, and for every n ≥ 8 they constructed a geometric thickness two graph with 6n − 20 

edge, but we taken the 6n-18 edges. And also we do the NP-hardness of coloring graphs of geometric thickness. 
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I. INTRODUCTION 

 

Degrees and Thickness: 

 

The concept of graph thickness has often been 

connected to electronic circuits, which might be printed 

in layers so that each layer is crossing-free, that is, a 

Planar graph. For practical reasons, the degrees in such 

graphs cannot be arbitrarily large. Bose and Prabhu  

consider the special case in which all degrees are 4 or 

less. Among their results, they show that if p # 1 (mod 

4), then the “degree-4thickness”of KP is [(p+ 3)/4]. For 

p = 5 and 9, this formula does hold of course, but the 

question remains unsettled for p = 4k + 1whenk >3. 

Halton & asksa reverse question of sorts: among all 

graphs with maximum degree d, what is the maximum 

thickness T(d)? He observed that Z’(d) > L(d+ 5)/4] 

since that is the thickness of Kd , d. On the other hand, 

Petersen’s theorem stating that every2k-regular graph 

can be decomposed into k 2-regulargraphs implies that 

Z’(d) < L(d+ 1)/2J. Clearly, T(l) = T(2) = 1 and 2“(3) = 

T(4) = 2. Halton conjectures that 2’(6) = 2: every graph 

with maximumdegree6 or less is biplanar . I would be 

quite surprised if this were so. More generally, he 

conjectures that every graph with maximum degree 4r – 

2 has thickness  or less. 

 

II. METHODS AND MATERIAL 
 

Coloring Problem 

 

Suppose that we have two maps ,one of countries on the 

earth and another of colonies on the moon, say, and that 

each country can have one colony on the moon. A 

proper coloring of the two maps has these properties. 

 

(1) Each country has the same color as its colony. 

(2) Adjacent countries have different colors. 

(3) Adjacent colonies have different colors. 

 

The basic question is this: what is the most colors 

needed for coloring any such pair of maps? Since each 

map has a graphs its dual ,by identifying each country 

vertex with its colony vertex, we see  that the union of 

the two graphs is biplanar .So, in effect, we are working 

for the maximum chromatic number among all graphs 

of thickness2. The standard argument based on degrees 

(implied by Euler’s formula)shows that it is at moat12. 

On the other hand, Sulanke(see [13]) observed that Kll –
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C5 has thickness2 and chromatic number9. Therefore, 

we have the following result. 

 

Biembeddings 

 

Included in the early work on thickness is an extension 

of biplanarity to other surfaces. Given a surface S, the 

S-thickness of a graph G is the minimum number of S-

embeddable graphs for which the union is G. If S is the 

projective plane, torus,or double-torus, then the S-

thickness of KP is L(p+ 5)/6J, L(P+ 4)/6J, snd L(P+ 

3)/6J, respectively.(In each of the next two surfaces, the 

Klein bottle and the triple-torus, only five-sixths of the 

thicknesses of KP are known.) The natural extension of 

biplanarity to other surfaces S is this: a graph is called 

S-bi embeddable if it is the union of two S-embeddable 

graphs. Most of the work on this topic, which was 

formally begun by Anderson and Cook ,involves 

complete graphs and orientable surfaces. Let B(h) 

denote the maximum order of a complete graph that is 

biembeddable on the orientable surface Sh, the sphere 

with h handles. (In the literature, most of the results are 

stated for B(h) + 1; that is, for the minimum P for which 

KP is not %-biembeddable.) Euler’s formula implies 

that B(h) < 1(1/2)(13 + 73+ 96h)J. From the thickness 

results cited earlier, we can deduce the following 

results. 

 

Theorem 1: 

 

For h S 3, the maximum order B(h) of a complete graph 

that is Sh-biembeddable satisfies B(O) = 8,  

 

B(1) = 13, B(2) = 14, and B(3) = 15 or 16. 

 

We note that if B(3) = 16,then KM must be the union of 

two triangulations of S3. We also note that if we let ~(k) 

denote the corresponding number for the non orientable 

surface with k cross caps, then for the projective plane 

we have~(l) = 12, and depending on whetherK13 is the 

union of two K leinbottle graphsor not, we have3(2) = 

12or 13. Anderson and Cook [23]also consider 

combinations of surfaces S and S’, considering  graphs 

that are the unionof an S-embeddable graphandanS’-

embeddable graph. We denote by B(i, j) the maximum 

order of a complete graph that is the union of an 

Sicandan  Sj-embeddable graph. In other words, B(i, j) 

denotes the maximum order of an Si-embeddable graph 

G whose complement~ is Sj-embeddable. The Euler 

bound here is B(i, j) S [(1/2)(13+ ~73 +48(i +j))]. A 

variety of sporadic results, some that cover infinitely 

many pairs of surfaces, have been found by Anderson 

and White, Anderson and Cabaniss and Jackson. A 

comprehensive survey of bi-embeddings was given by 

Cabaniss. Here we state some of what is known when 

one of the surfaces is the plane or the torus . 

 

Theorem 2: 

 

(a)The minimum order of a complete graph that is the 

union of a planar graph and an Sh- embeddable graph is 

8 if h = O;11or 12if h = 1; 12or 13if h = 2; 13if h = 3; 

and 13or 14 if h = 4. (b) The maximum order of a 

complete graph that is the union of a toroidal graph and 

an Sh-embeddable graph is 13 if h = 1 or 2, and 16if h = 

6. 

We find the case in which one of the graphs is planar 

particularly interesting. A variation of this problem is 

this question: what is the minimum genus of the 

complement of a planar graph of order p? Euler’s 

formula implies that it is at least [P(P– 13)/121+ 2. For 

small l values of p, we have the following corollary. 

 

Corollary:  

 

The minimum genus of the complement of a planar 

graph of order p is o, if p <8, 1, if p = 9, 10, or 11, 1 or 

2, if p = 12, 2 or 3, if p = 13, 3 or 4, if p = 14. 

In closing, we note that if K12is the union of a planar 

graph and a toroidal graph, then these must both be 

triangulations of their respective surfaces, and the same 

is true if K13is the union of a planar graph and a 

double-toroidal graph. 

 

Geometric Thickness: 

 

The thickness of a graph drawing is the minimum k ∈ N 

such that the edges of the drawing can be partitioned 

into k non-crossing sub drawings; that is, each edge is 

assigned one of k colours such that edges with same 

colour do not cross. Every planar graph can be drawn 

with its vertices at pre-specified locations . Thus a graph 

with thickness k has a drawing with thickness k [44]. 

However, in such a drawing the edges might be highly 

curved. This motivates the notion of geometric 

thickness. A drawing (ϕV,ϕE) of a graph G is geometric 

if the image of each edge ϕE(vw) is a straightline-

segment (by definition, with endpointsϕV(v) and 

ϕV(w)). Thus a geometric drawing of a graph is 

determined by the positions of its vertices. We thus refer 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  380 

to ϕV as a geometric drawing. The geometric thickness 

of a graph G, denoted by θ(G), is the minimum k ∈ N 

such that there is a geometric drawing of G with 

thickness k. Kainen  first defined geometric thickness 

under the name of real linear thickness, and it has also 

been called rectilinear thickness. By the Fary–Wagner 

theorem, a graph has geometric thickness 1 if and only 

if it is planar. Graphs of geometric thickness 2, the so-

called doubly linear graphs, were studied by Hutchinson 

etc... The outer thickness (respectively, arboricity, star-

arboricity) of a graph drawing is the minimum k ∈ N 

such that the edges of the drawing can be partitioned 

into k outer non- crossing subdrawings (non-crossing 

forests, non-crossing star-forests).Again a graph with 

outer-thickness (arboricity, star-arboricity) k has a 

drawing with outer thickness (arboricity, star-arboricity) 

k. 

 

III. RESULTS AND DISCUSSION 
 

EXAMPLE FOR GEOMETRIC THICKNESS : 

 

Two Graphs with 6n−19 Edges Let K0 9 be the graph 

obtained by deleting an edge from K9. In this section 

we first construct a geometric thickness two 

representation Γ of K0 9 that has 6n−19edges. We then 

show how to add vertices in Γ such that for any n ≥ 9 

one canconstruct a geometric thickness two graph with 

6 n−19 edges. 

 
Figure 1. (a) Illustration for the shared edges (bold). (b) 

Initial point set. (c) A geometric thickness two 

representation Γ of K0 9, where the planar layers are 

shown in red (dashed) and blue (thin). Black edges can 

belong to either red or blue layer. Free quadrangles are 

shown in green (shaded). Some edges are drawn with 

bends for clarity. 

 

Hutchinson et al. [14, Theorem 6] proved that if any 

geometric thickness two graph with 6n−18 edges exists, 

then the convex hull of its geometric thickness two 

representation must be a triangle. This representation is 

equivalent to the union of two plane triangulations that 

share at least six common edges, i.e., the three outer 

edges and the other three edges are adjacent to the three 

outer vertices, as shown in black in Figure 1(a). Since 

each triangulation contains 3n−6 edges, the upper bound 

of 2(3n−6)−6 = 6n−18 follows. These prop- erties of an 

edge maximal geometric thickness two representation 

motivated us to examine pairs of triangulations that 

create many edge crossings while drawn 

simultaneously. In particular, we first created a set of 

points interior to the con- vex hull such that addition of 

straight line segments from each interior point to the 

three points on the convex hull creates two plane 

drawings that, while drawn simultaneously, contain a 

crossing in all but the six common edges. Fig- ure 1(b) 

illustrates such a scenario. We then tried to extend each 

of these two planar drawings to a triangulation by 

adding new edges such that every new edge crosses at 

least one initial edge. We found multiple distinct point 

sets for which all but one newly added edge cross at 

least one initial edge, resulting in multiple distinct 

geometric thickness two representations with 2(3n−6)−7 

= 6n−19 edges. For example, see Figure 1(c), where the 

underlying graph is K0 9. Let Γ be a geometric 

thickness two representation. A triangle in Γ is empty if 

it contains exactly three vertices on its boundary, but 

does not contain any vertex in its proper interior, e.g., 

the triangle ∆ghi in Figure 1(d). A quadrangle in Γ is 

free if it is created by the intersection of two empty 

triangles but does not contain any vertices of Γ, as 

shown in Figure 1(d) in green. 

 

 

Architecture Diagram for Proposed System 
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The system uses to find planar representation of 

different layers by using breadth first search.The 

proposed system uses breadth first search instead of 

greedy search which reduces the time required for 

coloring the given non-planar graph.This  uses 

Polynomial time concept.Using breadth first search we 

are splitting the layers and the cross edges are treated as 

another layer.Finally each layer is colored with different 

colors. 
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